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Earth Mover’s Distance

  size-  sets in  for A, B n (ℝd, ℓ2) d ≈ log n

  is the minimum cost of a perfect bipartite matchingEMD(A, B)

A B

(a.k.a. Wasserstein-1 Distance, Optimal Transport Distance) 



Applications

“Mapping cells through time and space with moscot”. Klein et. al. 2025.

Biology: Single-Cell Analysis



Applications

“Optimal Transport for Domain Adaptation”. Courty, Flamary, Tuia. 2017.

 ML: Domain Adaption 
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Practical Algorithms

• Network Simplex algorithm , exactO(n3)

Exact

“Sinkhorn Distances: Lightspeed Computation 
of Optimal Transport”. Cuturi. 2013.

• Sinkhorn algorithm , additive approximation O(n2/ε) ε

Approximation Schemes

Sinkhorn is GPU-friendly, 
parallelizable and differentiable 



Complexity (before FOCS ’23)

• Min-Cost Flow in near-linear time n2+o(1)

“Maximum Flow and Minimum-Cost 
Flow in Almost-Linear Time”. Chen, 
Kyng, Liu, Peng, Gutenberg, Sachdeva. 
2022.

• No exact algorithm, under OVHn2−δ “Conditional Hardness of Earth 
Mover Distance”. Rohatgi. 
2019.

• Network Simplex algorithm , exactO(n3)

“Sinkhorn Distances: Lightspeed Computation 
of Optimal Transport”. Cuturi. 2013.

• Sinkhorn algorithm , additive approximation O(n2/ε) ε

Exact

Approximation Schemes

• Curse of dimensionality:  for -approximationÕ(n ⋅ ε−d) (1 + ε)
“A deterministic near-linear time approximation 
scheme for geometric transportation”. Fox. Lu. 
2023.

Bad for d ≈ log n
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Theorem (Andoni-Zhang 2023): 

FOCS’23: Sub-quadratic -approx. EMD(1 + ε)

-Approx. Euclidean EMD can be computed in  time(1 + ε) n2−Ω(ε2)

“Sub-quadratic -approximate Euclidean 
Spanners, with Applications”. Andoni, Zhang. 2023.

(1 + ε)

Techniques?



Interlude: Approximate Nearest  Neighbor

Approximate Nearest Neighbor (ANN): 

Given  and  return  such that  A ⊆ ℝd q ∈ ℝd ā ∈ A

| | ā − q | | ≤ (1 + ε) ⋅ mina∈A | |a − q | |

Locality-Sensitive Hashing •  preprocessing time


•  query time

n2−Ω(ε)

n1−Ω(ε)

Here is a simple problem!

Pr[h(x) = h(y)] = {Small if  | |x − y | | > (1 + ε)r
Large if  | |x − y | | ≤ r



AZ’23 Techniques: Spanners via LSH

Def: A -Spanner Graph  is a weighted graph which 
shortest-path metric -approximates the ground metric.

(1 + ε) G
(1 + ε)

Construct -Spanners with  edges via LSH(1 + ε) n2−Ω(ε2)

Pr[h(x) = h(y)] = {Small if  | |x − y | | > (1 + ε)r
Large if  | |x − y | | ≤ r

r/2

r/2

r/2

r/2

r/2

r/2



Construct -Spanners with  edges via LSH(1 + ε) n2−Ω(ε2)

AZ’23 Techniques: Spanners via LSH

Def: A -Spanner Graph  is a weighted graph which 
shortest-path metric -approximates the ground metric.

(1 + ε) G
(1 + ε)

Small Spanners + Min-Cost Flow in near-linear time = 


-approximate EMD in time (1 + ε) n2−Ω(ε2)

Are the complexity of EMD and ANN related? 
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Approximate Closest Pair

Approximate Closest Pair (CP): 

Given  return  such that 

 

A, B ⊆ ℝd (ā, b̄) ∈ A × B

| | ā − b̄ | | ≤ (1 + ε) ⋅ min(a,b)∈A×B | |a − b | |

Here is another simple problem!



Theorem (B., Cohen-Addad, Jayaram, Waingarten ’25): 

EMD reduces to Closest Pair

Given an algorithm for -approximate Closest Pair that runs


in time , there exists an algorithm for -approximate


EMD that runs in time  

(1 + ε)

n2−ϕ (1 + O(ε))

n2−Ω(ϕ)

“Approximating High-Dimensional Earth Mover’s 
Distance as Fast as Closest Pair”. Beretta, Cohen-
Addad, Jayaram, Waingarten. 2025.

https://lorenzo2beretta.github.io/pdfs/Closest_Pair_for_Subquadratic_EMD.pdf
https://lorenzo2beretta.github.io/pdfs/Closest_Pair_for_Subquadratic_EMD.pdf


Approximate Closest Pair

Approximate Closest Pair (CP): 

Given  return  such that 

 

A, B ⊆ ℝd (ā, b̄) ∈ A × B

| | ā − b̄ | | ≤ (1 + ε) ⋅ min(a,b)∈A×B | |a − b | |

Here is another simple problem!

Locality-Sensitive Hashing

 ANN queries yield complexity  n n2−Ω(ε)

•  preprocessing time


•  query time

n2−Ω(ε)

n1−Ω(ε)



Approximate Closest Pair
Approximate Closest Pair (CP): 

Given  return  such that 

 

A, B ⊆ ℝd (ā, b̄) ∈ A × B

| | ā − b̄ | | ≤ (1 + ε) ⋅ min(a,b)∈A×B | |a − b | |

“Polynomial Representations of Threshold 
Functions and Algorithmic Applications”. 
Alman, Chan, Williams. 2016.

CP can be solved in time 


Via polynomial method and fast matrix multiplication

n2−Ω(ε1/3) ≪ n2−Ω(ϵ)

“Finding Correlations in Subquadratic 
Time, with Applications to Learning 
Parities and Juntas”. Valiant. 2012.

CP algorithms must use at least  time with n2−f(ε) f(ε) → 0

“Hardness of Approximate Nearest 
Neighbor Search”. Rubinstein. 2018.



Theorem (B., Cohen-Addad, Jayaram, Waingarten ’25): 

EMD reduces to Closest Pair

Given an algorithm for -approximate Closest Pair that runs


in time , there exists an algorithm for -approximate


EMD that runs in time  

(1 + ε)

n2−ϕ (1 + O(ε))

n2−Ω(ϕ)

“Approximating High-Dimensional Earth Mover’s 
Distance as Fast as Closest Pair”. Beretta, Cohen-
Addad, Jayaram, Waingarten. 2025.

Corollary 

We solve -approximate EMD in time , 
improving over AZ ’23 and breaking the LSH barrier.

(1 + ε) n2−Ω(ε1/3) ≪ n2−Ω(ε2)

https://lorenzo2beretta.github.io/pdfs/Closest_Pair_for_Subquadratic_EMD.pdf
https://lorenzo2beretta.github.io/pdfs/Closest_Pair_for_Subquadratic_EMD.pdf
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EMD Linear Program

A B

φ(a1)

φ(a2)

φ(a3)

φ(a4)

φ(b1)

φ(b2)

φ(b3)

φ(b4)



Approximate Dual via MWU

• Update the dual variables  over time 


• Maintain a distribution  over 


• Define  that satisfies the -average of constraints


•

φ(t) t = 1…O(log n)

λ(t)
a,b A × B

φ(t+1) λ(t)
a,b

λ(t+1)
a,b ∝ λ(t)

a,b ⋅ exp ( φ(t)(a) + φ(t)(b)
| |a − b | | ) ∝ exp ∑

s≤t

φ(s)(a) + φ(s)(b)
| |a − b | |

To this end,  samples suffice!Õ(n)



Sampling via Closest Pair

λa,b ∝ exp ( K
| |a − b | | )

With some work, we can reduce to the case 
 ∑

s<t

φ(s)(a) + φ(s)(b) = Ka,b = K

Approximate Closest Pair (CP): 
Given , 

find  and  that minimize  
 up to a factor .

A, B ⊆ (ℝd, ℓ1)
a ∈ A b ∈ B

| |a − b | |2 1 + ε

For , CP reduces to sampling 
from  

K ≈ ε−1 ⋅ log n
λa,b



Sampling via Closest Pair
All Close Pairs 

Given  and , return all 
pairs at distance  if there are less than  

pair at distance 

A, B ⊆ (ℝd, ℓ1) t > 0
≤ t n1.5

≤ (1 + ε)t

Õ(n1.5) Ω(n1.5)

t (1 + ε)t

λa,b ∝ exp ( K
| |a − b | | )



Sampling via Closest Pair

λa,b ∝ exp ( K
| |a − b | | )

Õ(n1.5) Ω(n1.5)

All Close Pairs 
Given  and , return all 

pairs at distance  if there are less than  
pair at distance . Else, return .

A, B ⊆ (ℝd, ℓ1) t > 0
≤ t n1.5

≤ (1 + ε)t ⊥



λa,b ∝ exp ( K
| |a − b | | )

Sampling via Closest Pair

λa,b ∝ exp ( K
(1 ± ε) ⋅ | |a − b | | )

Õ(n1.5) Ω(n1.5)

All Close Pairs 
Given  and , return all 

pairs at distance  if there are less than  
pair at distance 

A, B ⊆ (ℝd, ℓ1) t > 0
≤ t n1.5

≤ (1 + ε)t
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Theorem (B., Cohen-Addad, Jayaram, Waingarten ’25): 

EMD reduces to Closest Pair

Given an algorithm for -approximate Closest Pair that runs


in time , there exists an algorithm for -approximate


EMD that runs in time  

(1 + ε)

n2−ϕ (1 + O(ε))

n2−Ω(ϕ)

Fast heuristics for ANN / CP might give 
fast algorithms for EMD!

Reducing EMD to CP is pointless, as we have a 
lower bound of  with  for CPn2−f(ε) f(ε) → 0



Heuristics for ANN

These ANN heuristics take
 time empirically!≈ log n

“A Comprehensive Survey and Experimental 
Comparison of Graph-Based Approximate Nearest 
Neighbor Search”. Wang, Xu, Yue, Wang. 2021.

“Efficient and robust approximate nearest neighbor 
search using Hierarchical Navigable Small World 
graphs”. Malkov, Yashunin. 2018.



Heuristics for ANN

These ANN heuristics 
take  time 

empirically!
≈ log n

Rick, the reduction from EMD to CP is highly 
impractical! 

Keep dreaming, boy!



Heuristics for EMD through ANN
Pros

Cons

• ANN algorithms seem to exploit the structure of data


• ANN is highly studied and engineered

• Current reduction is impractical


• Unlike Sinkhorn, Graph-based ANN Algorithm are sequential
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Further Directions

Is -approximate EMD in  time possible?(1 + ε) n1.99

Can we prove a fine-grained lower bound on -approximate 
EMD similar to the one proved for CP?

(1 + ε)

CP algorithms must use at least  time with n2−f(ε) f(ε) → 0

“Hardness of Approximate Nearest 
Neighbor Search”. Rubinstein. 2018.

Likely a HARD question!



Further Directions

LSH-based algos for -approximate EMD run in  time. 


Can we break the LSH barrier also for  larger than ?

c n1+Θ(1/c)

c 1 + ε

Can we extend our techniques to more geometric 
problems such as Kernel Density Estimation?



Further Directions

Design heuristics for EMD that leverage fast ANN heuristics

Theory: Find simpler EMD-to-CP reductions 


Practice: Explore ANN-based EMD heuristics empirically



Summary

• We proved a reduction between two central problems in high-
dimensional computational geometry: EMD and CP


• Algorithmically, we broke the LSH barrier for approximate EMD


• In practice, ANN is easier than worst-case bounds


• Our reduction might inspire heuristics for EMD via ANN heuristics

Thanks! Any Questions?


