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Earth Mover’s Distance

(a.k.a. Wasserstein-1 Distance, Optimal Transport Distance)

A, B size-n setsin (R%, ¢,) ford ~ logn

EMD((A, B) is the minimum cost of a perfect bipartite matching




Applications

[ Biology: Single-Cell Analysis |
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“Mapping cells through time and space with moscot”. Klein et. al. 2025.




Applications

( ML: Domain Adaption
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“Optimal Transport for Domain Adaptation”. Courty, Flamary, Tuia. 2017.
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Practical Algorithms

o)

. Network Simplex algorithm O(n?), exact

Sinkhorn is GPU-friendly,

parallelizable and differentiable

[ Approximation Schemes )

e Sinkhorn algorithm O(nz/e), additive approximation &

“Sinkhorn Distances: Lightspeed Computation
of Optimal Transport”. Cuturi. 2013.

POT: Python Optimal Transport




Complexity (before FOCS ’23)
=

* Network Simplex algorithm M) exact | aximum Flowand Minimum-Cost

Flow in Almost-Linear Time”. Chen,
2+0(1) Kyng, Liu, Peng, Gutenberg, Sachdeva.

« Min-Cost Flow in near-linear time n 2022.
. No n°~%exact algorithm, under OVH ronditional Hardness of Earth
over Distance”. Rohatgi.
2019.

[ Approximation Schemes ]

. Sinkhorn algorithm O(n?/¢), additive approximation &

“Sinkhorn Distances: Lightspeed Computation
of Optimal Transport”. Cuturi. 2013. Bad for d ~ log n
. Curse of dimensionality: O(n - £%) for (1 + &)-approximation

“A deterministic near-linear time approximation

scheme for geometric transportation”. Fox. Lu.
2023.
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FOCS’23: Sub-quadratic (1 + ¢)-approx. EMD

[ Theorem (Andoni-Zhang 2023)' ]

2 Q(e

]
) tlme»

ﬁ (1 8) Approx Euclldean EMD can be computed in n*

Techniques?

“Sub-quadratic (1 + ¢)-approximate Euclidean
Spanners, with Applications”. Andoni, Zhang. 2023.




Interlude: Approximate Nearest Neighbor

Here is a simple problem!

( )

Approximate Nearest Neighbor (ANN):

Given A C R% and g € R return @ € A such that

[la—ql]l < (1 +¢&) miney||a—gql|

e 1177428 preprocessing time

p 1) query time !

Small if ||[x—y|| >0+ ée)r

>@ Pritx) = h(y)] = {Large if [lx—y||<r




AZ’23 Techniques: Spanners via LSH

€)-Spanner Graph G is a weighted graph which

{Def: A (1 +
| shortest-path metric (1 + &)-approximates the ground metric.

£)-Spanners with n>~*") edges via LSH |

 Construct (1 + -

i) ’: o

Prih(x) = h(y)] = {

Small if ||[x—y||> {0+ ée)r
Large if ||x—y]||<r



AZ’23 Techniques: Spanners via LSH

’i Def: A (1 + £)-Spanner Graph G is a weighted graph which
shortest-path metric (1

+ £)-approximates the ground metric.

£)-Spanners with n>~¢) edges via LSH }

j Construct (1 + S

Small Spanners + Min-Cost Flow in near-linear time =

(1 + &)-approximate EMD in time n 2=

Are the complexity of EMD and ANN related? :
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Approximate Closest Pair

Here is another simple problem!

r

Approximate Closest Pair (CP):

Given A, B C R return (@, b) € A X B such that

[|a—b|| < (1 +e) mingpeaxsl|la—Dbl]




EMD reduces to Closest Pair

[ Theorem (B., Cohen-Addad, Jayaram, Waingarten ’25): ]

Given an algorithm for (1 + €)-approximate Closest Pair that runs |

“Approximating High-Dimensional Earth Mover’s
Distance as Fast as Closest Pair”. Beretta, Cohen-
Addad, Jayaram, Waingarten. 20235.



https://lorenzo2beretta.github.io/pdfs/Closest_Pair_for_Subquadratic_EMD.pdf
https://lorenzo2beretta.github.io/pdfs/Closest_Pair_for_Subquadratic_EMD.pdf

Approximate Closest Pair

Here is another simple problem!

( )

Approximate Closest Pair (CP):

Given A, B C R return (@, b) € A X B such that

[|a—b|| < (1 +e) mingpeaxsl|la—Dbl]

e 1177428 preprocessing time

jf,i n I—Q(e)

query time ‘.'

n ANN queries yield complexity n2—Ede)



N

Approximate Closest Pair

Approximate Closest Pair (CP):

Given A, B C R% return (a, b) € A X B such that

l[|a—b|| < (1+e) mingpeaxslla—Db]]

\. J

1/3
CP can be solved in time n2~2(E") « ;27446

Via polynomial method and fast matrix multiplication

“Finding Correlations in Subquadratic “Polynomial Representations of Threshold
Time, with Applications to Learning Functions and Algorithmic Applications”™.
Parities and Juntas™. Valiant. 2012. Alman, Chan, Williams. 2016.

CP algorithms must use at least 727 time with f(e) — 0

“Hardness of Approximate Nearest
Neighbor Search”. Rubinstein. 2018.




EMD reduces to Closest Pair

[ Theorem (B., Cohen-Addad, Jayaram, Waingarten ’25): ]

Given an algorithm for (1 + &)-approximate Closest Pair that runs

‘,

jin time n”~?, there exists an algorithm for (1 + O(g))-approximate #'

EMD that runs in time p>~ %% ]

[ Corollary j

We solve (1 + &)-approximate EMD in time n>~**¢ Y« nz_Q(gz),
improving over AZ "23 and breaking the LSH barrier. '

“Approximating High-Dimensional Earth Mover’s
Distance as Fast as Closest Pair”. Beretta, Cohen-
Addad, Jayaram, Waingarten. 20235.



https://lorenzo2beretta.github.io/pdfs/Closest_Pair_for_Subquadratic_EMD.pdf
https://lorenzo2beretta.github.io/pdfs/Closest_Pair_for_Subquadratic_EMD.pdf
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EMD Linear Program

Primal Dual

Minimize Z Zap - ||la—b|| Maximize Z w(a) + Z ©(b)
a,b b

a

subject to Zxa’b —1 Vbe B subject to (a) + ¢(b) < ||la — b|| Va,b

Y zap=1 VacA
b

CL‘a,b Z 0 Va, b

@(by)

¢(by)

¢(bs3)

@(by)




Approximate Dual via MWU

Dual

Maximize

Define @+ that satisfies the /lcgg-average of constraints

(t+1)
/Ia,b

),
X /Ia’b eXp

9"(a) + " (b)

[la—b]]

“Na) + (b)

[la—b]]



Sampling via Closest Pair

r K \ Approximate Closest Pair (CP): \
Given A, B C (RY, Z1),
/161,[9 X €Xp ( | ‘d—b‘ ‘ ) l | finda € A and b € B that minimize
K J |la—b]||, uptoafactor I +e.
\_ W,

With some work, we can reduce to the case ForK~e!. log n, CP reduces to sampling

Y 0@ + oY) =K,, =K from J,,,

s<t




Sampling via Closest Pair
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Sampling via Closest Pair
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Sampling via Closest Pair
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EMD reduces to Closest Pair

[ Theorem (B., Cohen-Addad, Jayaram, Waingarten ’25): ]

Given an algorithm for (1 + &)-approximate Closest Pair that runs

fin time n°~?, there exists an algorithm for (1 4+ O(¢))-approximate #'

/)
)
b

{EMD that runs in time n>=*® ]

Reducing EMD to CP is pointless, as we have a
lower bound of 727 with f(¢) — 0 for CP

Fast heuristics for ANN / CP might give
fast algorithms for EMD!




Heuristics for ANN -

These ANN heuristics take
~ log n time empirically!

(a) Original dataset

“A Comprehensive Survey and Experimental

Comparison of Graph-Based Approximate Nearest
Neighbor Search”. Wang, Xu, Yue, Wang. 2021.

« 1000 - (b) Random vectors, d=8
S M=6, Recall=0.95, 10-NN
T 800 —a— NSW

3“7 | -® Hierarchical NSW
£

Q
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(b) Graph index

“Efficient and robust approximate nearest neighbor
search using Hierarchical Navigable Small World
graphs”. Malkov, Yashunin. 2018.




= = _
Heuristics for ANN .
« 1000 - (b) Random vectors, d=8
S M=6, Recall=0.95, 10-NN
T —a— NSW
"g_ 800 7 —e— Hierarchical NSW
£
o)
These ANN heuristics g ]
take ~ log n time @ 400
. . & “".».'/.'
empirically! 200
TS 24
] tt‘*". o
0

10° 10° 10* 10° 10° 10" 10°

Dataset size

Rick, the reduction from EMD to CP is highly
impractical!

Keep dreaming, boy!




Heuristics for EMD through ANN

Pros

* ANN algorithms seem to exploit the structure of data

 ANN is highly studied and engineered

Cons

* Current reduction is impractical

* Unlike Sinkhorn, Graph-based ANN Algorithm are sequential
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Fu rther Di reCtiOnS Likely a HARD question!

s (1 4+ &)-approximate EMD in n'°° time possible?

Can we prove a fine-grained lower bound on (1 + &)-approximate
EMD similar to the one proved for CP?

“Hardness of Approximate Nearest
Neighbor Search”. Rubinstein. 2018.




Further Directions

LSH-based algos for c-approximate EMD run in n 110U time,

Can we break the LSH barrier also for ¢ larger than 1 + £?

Can we extend our techniques to more geometric
problems such as Kernel Density Estimation?



Further Directions

Design heuristics for EMD that leverage fast ANN heuristics

Theory: Find simpler EMD-to-CP reductions

Practice: Explore ANN-based EMD heuristics empirically




Summary

* We proved a reduction between two central problems in high-
dimensional computational geometry: EMD and CP

e Algorithmically, we broke the LSH barrier for approximate EMD
* |n practice, ANN is easier than worst-case bounds

e QOur reduction might inspire heuristics for EMD via ANN heuristics

Thanks! Any Questions?



